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1.0 SUMMARY 

This report represents a summary of MSC Internal  Note No. 67-EP-20 
Power Generation and Cryogenic Gas Storage System Study fo r  t i t l e d  

Post AAP 1-4 Manned Missions.t! 
from tha t  report: 

The following i s  the summary extracted 

"This report presents a s tudy of the possible e l ec t r i ca l  power 
generation systems (PGS) and cryogenic gas storage systems (CGSS) fo r  
the Apollo Applications Program (A@) missions anticipated a f t e r  MP 
1-4. 
o r  new hardware are presented f o r  various cluster  configurations. 
cluded are a baseline mission, two a l ternate  missions, and one fallback 
mission. 

Detailed system configuration analyses based on existing, modified, 
In- 

PGS configurations studied were (1)  a l l  solar  c e l l b a t t e r y  system 
with fue l  c e l l  1 &-day fallback capability, (2)  solar  cell /battery/fuel 
c e l l  system with the fue l  c e l l s  operating for  90 days a t  the water pro- 
duction r a t e  required f o r  crew consumption, and ( 3 )  solar  cell /battery/ 
fue l  c e l l  system with the fue l  ce l l s  providing CSM power f o r  the f u l l  
90-day mission phase. 
array orientation systems, ( 2)  one-degree-of-freedom array orientation 
systems with B adjust, and ( 3 )  operation of these systems with the 
arrays both perpendicular t o  and para l le l  t o  the o rb i t a l  plane during 
the streamline f l i gh t  mode of APPS operations. 

Also evaluated were (1 ) one-degree-of-freedom 

It was determined that  a 90-day CGSS i s  feasible using s l igh t ly  
modified Cluster I hardware. However, a volume limit exis t s  on 
quantity of cryogenics than can be located i n  the CSM. 
included the necessary atmospheric gas but only s l igh t ly  more H2 and 
O2 than needed f o r  fue l  ce l l s  t o  operate a t  the  crew water production 
r a t e  power leve l  of 1200 watts. 

This limit 

Cluster I fue l  c e l l  hardware--1500-hour baseline P and W and 
1500-hour backup A-C--will  sa t isfy a l l  fue l  c e l l  requirements f o r  
Cluster 11. 
CSM during APPS operations is shown t o  s ignif icant ly  reduce the solar  
c e l l b a t t e r y  PGS weight. 

Use of the fuel  cel l  fallback capabili ty t o  operate the 

Solar c e l l b a t t e r y  PGS analyses show that  a l l  mission power require- 
ments can be sa t i s f ied  using improved SIW arrays with additional arrays 
on the AMDA. 
systems. 
s ignif icant ly  reduce PGS weight. 

Both arrays require one-degree-of-freedom orientation 
The addition of 8 adjust t o  the AMDA arrays was shown t o  

It was a lso  determined that operating the PGS arrays para l le l  t o  
the o rb i t  plane allows increasingly smaller array area--and PGS weight-- 
as APPS operations are  programmed t o  perform a t  increasingly higher 
included B angles. 

1 



.. . . 

Orbital  storage net  continuous power can be 485 watts m i n i m u m ,  
based on SIVB array area with an in i t ia l  sun adjustment." 

2.0 INTmDUCTION 

This report  summarizes a comprehensive report  prepared by the 
Power Generation Branch, Propulsion and Power Division, MSC on a 
study of possible e l e c t r i c a l  power generation systems (PGS) and cryo- 
enic gas storage systems (CGSS) for  the Apollo Applications Program f AAF') missions anticipated a f t e r  the Cluster I, AAP 1-4 missions. 

The study was i n i t i a t e d  a t  MSC by t h e  AAP Program Office i n  response t o  
a NASA Headquarters request fo r  a composite MSC/KSC/MSFC study t o  
prepare baseline and al ternate  mission plans and system configurations 
f o r  low-earth-orbit, post Cluster I missions--referred t o  hereaf ter  as 
Cluster 11. Study team coordination a t  MSC was provided by the 
Advanced Spacecraft Technology Division. 
Task Force (MPTF) provided overall study direction and control. 

Also, a Mission Planning 

The approach used f o r  t h i s  PGS/CGSS study was as follows: 

a. Examination of the groundrules and guidelines specif ical ly  
affecting PGS and CGSS requirements. 

b. Review of candidate hardware f o r  Cluster I1 use f romthe  stand- 
points  of s t a t e  o f  the art ,  discussion of Cluster I hardware and concepts, 
and potent ia l  modifications t o  Cluster I hardware and concepts. 

discussed i n  b. and, i f  necessary, ( 2 )  improved designs tha t  u t i l i z e  
present technology t o  the maximum prac t ica l  extent. 

c. Design and analysis based on ( I  ) the  candidate hardware as 

d. Summation and discussion of system comparisons. 

e. Discussion o f  mission/system comparisons. 

f .  Discussion of programmatic considerations. 

g. Conclusions and recommendations. 

The order of presentation i n  th is  summary report, as  i n  the  detai led 
report ,  i s  a s  outlined above. 

2 
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3.0 REQUIREMENTS 

3.1 PGS/CGSS STUDY GFOUNDRULES AND GUIDELINES 

The groundrules and guidelines were examined t o  determine which 
ones impact the PGS and CGSS designs and analyses. 
evaluated and discussed with the MSC study coordinator t o  assure pro e r  

CGSS study direction. 
MPTF mid-study revisions, were as follows: 

These were then 

interpretat ion and t o  provide a firm basis f o r  establishing the PGS P 
These guidelines and grow-drtlles, including 

Guidelines 

a. A new Cluster should be established a t  approximately 260 n.m. 
and 50' inclination. 

b. 
should be retained with reduced objectives. 
be 14 days. 

The option t o  f l y  fall-back missions separate from the cluster  
The m i n i m u m  mission i s  to  

c. The a b i l i t y  of baseline sequences t o  respond t o  program and 
in-fl ight contingencies should be examined and understood. 

d. Each manned launch should be planned t o  be open-ended to  
90 days. 

e. A s  a design goal, missions should overlap with suff ic ient  
margins t o  assure continuity of manned operation with reasonable con- 
f idence . 

f .  Planning and design shall  include consideration of orb i ta l  
storage fall-back mode capabili t ies.  

g. The AF'PS experiments should be designed t o  be operated with a 
c luster  fo r  long-term operations a t  260 n.m. 
mission should not be planned. 

A single launch, separate 

h. Consider reduced cluster leakage. 

Groundrules 

a. Intermittent operation of AF'PS and OWS experiments: APPS, two 
weeks active t two weeks standby each season. 
remainder of year. 

OWS experiment active 

b. Control moment gyros (CMG's) on AMDA. 

3 



c. OWS and AMDA always liveable. 

d. Spacecraft r o l l  f o r  APPS t a rge ts  of opportunity limited t o  
+,4.5'. Time t o  r o l l  may be as l i t t l e  as  60-90 seconds. 

e. Water evaporative cooling discouraged. 

f .  Water t o  be used fo r  washing. 

g. Service module (SM) reaction control system (RCS) used to  
desaturate CMG's. 

h. Launch a three-months supply of water on first launch 
sequence. 

i. Consider water reclamation where necessary. 

j . Stabilization: 

CSM/AMDA/OWS/APPS A, B--streamlined mode with APPS tracking 
e i ther  forward or aft (depends on best  solar  power case) when AF'PS i s  
active. Sun-oriented r e s t  of time. 

k. Hardware t o  be used: As far as  possible, configurations should 
be derived from those developed f o r  Cluster I as follows: 

(1) CSM, as  developed for Ap9-3, but with integral ly  carried 
cryogenics f o r  75 t o  90 days, 
14 days independent operation should also be carried. 

Block I1 CSM expendables fo r  a nominal 

(2) OWS/AMDA - a s  developed f o r  A@-2. Improved solar  panels 
should also be investigated. 
t he  AMDA should be retained. 

Ability t o  operate a c luster  using only 

1. Docking ports  may p0-J be blocked. 

m. Consider i n i t i a l  launch to  be January 1 ,  1970, and l a t e s t  
delivery f o r  KSC ins ta l la t ion  t o  be June 1,  1969. 

3.2 MISSIONS AND CONFIGURATIONS 

The missions studies included a baseline mission, two alternates,  
The baseline mission launch and operations and one fall-back mission. 

sequences are presented i n  f i g u r e  1. This mission consists of four 
manned CSM launches, one unmanned OWS/AMDA launch, and one unmanned 
launch of APPS i n  a rack which is on a modified lunar module (IN) 
ascent stage vehicle. Alternate mission 1 sequences are presented i n  

4 
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figure 2. 
one unmanned launch. The l a t t e r  is  an OWS/AMDA vehicle combination 
which contains APPS experiments i n  t he  MDA and i n  a special  movable 
MDA nose cone. 
This mission also uses four manned CSM launches and one unmanned launch. 
It i s  the same as al ternate  1 except t ha t  no OWS i s  included. 
fall-back mission considered i s  applicable only within the baseline 
mission using a CSM/LM-APPS combination. 
m i n i m u m  of 14 days duration and must be flown i n  a streamlined mode. 

This mission consists o f  four manned CSM launches and only 

Alternate mission 2 sequences are given i n  figure 3. 

The 

This mission i s  t o  be a 

The terms active, standby, and dormant used i n  the secpence figures 
mean, respectively, f u l l  operation, l i veab i l i t y  or  capabili ty fo r  
immediate response, and minimum function tha t  w i l l  insure reuse. 

3.3 POWER REQUIREMENTS 

The mission power prof i les  based on these requirements are given 
i n  figures 4 - 6. 
vehicle power requirements with the exception that OWS experiments or  
t h e i r  equivalent were considered t o  be i n  the AMDA f o r  a l ternate  
mission 2. Peak power requirements were assumed t o  be 150 percent of 
the  gverage power. 
used ' in  previous studies, and i s  a reasonable factor fo r  vehicle power 
leve ls  i n  the 2 Kwe range and above. 
CSM f o r  other than 14-day requirements, the peak i s  assumed t o  be 
3200 watts. 

The prof i les  are s t ra ight  forward additions of 

This i s  based on a review of peak power requirements 

However, with fue l  c e l l s  i n  the 

This i s  based on detailed CSM analyses. 

Voltage regulation was assumed t o  be the same as  fo r  Cluster I 
vehicles, a s  follows: 

CSM BUS 26.4 t o  31.5 vol ts  
AMDA BUS 22.0 t o  29.0 vol ts  
LM BUS 27.5 t o  32.0 vol ts  

3.4 CGSS REQUIREMENTS 

The CGSS must supply the metabolic and vehicle leakage gas f o r  90 

Oxygen and nitrogen must be supplied t o  the 
days and fue l  c e l l  reactant gas requirements fo r  a 90-day mission o r  
14-day fall-back mission. 
crew and oxygen and hydrogen must be supplied t o  the fue l  cel ls .  
gas leakage and metabolic requirements used are given i n  table  1. 
a r e  based on a 5 ps i ,  70 percent 0 /30 percent N2 atmosphere. 

t o  crew needs, a ra te  of approxhmtely nine pounds of water per man-day 
was used. 

The 
They 

For 
purposes of operating the fue l  cel  i? s a t  a water production r a t e  equal 

6 
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3.5 WEIGHTS AND PAYLOAD MARCINS 

Table 2 summarizes the launch vehicle capabi l i t ies  and spacecraft 
weights assumed. 
given fo r  reference. 
subtracted from reference weights t o  establish a common base f o r  
system comparisons. 
were retained i n  the numbers given. 
vehicles with Minuteman strap-on solid rockets. 
the strap-ons were assumed t o  be only 7000 pounds more than without. 

Where applicable, Cluster I vehicle weights are 
The expendables and primary power systems were 

Preactivation and descent primary bat tery systems 

The capabi l i t ies  with 
The launch margins given are f o r  

3.6 GENERAL DESIGN PHILOSOPHY AND CFlITERIA 

The general design philosophy was a s  follows: 

a. Evaluate Cluster I systems f o r  appl icabi l i ty  t o  Cluster 11. 
If they do not perform sat isfactor i ly ,  modify o r  improve them t o  a 
reasonable degree. If the l a t t e r  is not satisfactory,  consider new 
systems or combinations of improved systems. 

b. Add 10 percent contingency t o  a l l  systems. 

c. Use three-for-two redundancy f o r  ba t te r ies  and fue l  cel ls .  

d. Use three-for-two redundancy f o r  power conditioning, or  derate 
and provide interconnection capability. 

The abort c r i te r ion  i s  to  i n i t i a t e  abort when one more fa i lure  of 
a single element i n  a system would jeopardize crew safety. 

4.0 CANDIDATE HARDWAIB REVIEW 

This section presents a review of candidate PGS and CGSS hardware 
available or  potentially available for  Cluster I1 mission application. 
I n  the detailed study report, each major PGS and CGSS component i s  
examined and reviewed from the standpoints of state-of-the-art, Cluster I 
usage, and potent ia l  modifications ( i f  used on Cluster I )  t o  sa t i s fy  
Cluster I1 mission- ( s )  requirements. The following subsections summarize 
the  results and conclusions of that  review. 

12 
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TABLE I 

ATMOSPHER I C GAS REQU I REMENTS 

LEAKAGE 

S I V B  

AMD A 

DOCKING PORT 

1. DOCKED 

2, SEALED 

LM-APPS 

APPS RACK 

3,4 LBS/DAY 

3.5 

1.6 

0 

2, G 

2.0 

1.4 

1.4 

e4 

,4 

0 

05 

e 5  

L B S/D AY 
u 

METABOL I C  

I 1 6 LB/DAY ON ALL CONFIGURATIONS 

S l V B  A C T I V A T t O N  I 
412 LB 02 

106 LB N 2  
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4.1 CRYOGENIC GAS STORAGE SYSTEMS 

Table 3 presents a summary o f  the  state-of-the-art f o r  cryogenic 
tankage potent ia l ly  available for  Cluster I1 applications. 
tanks shown f o r  mission durations of 56 days w i l l  soon be under 
development fo r  AAP Cluster I. 
sa t i s fy  the  90-day mission requirement by use of external insulation. 
The f e a s i b i l i t y  of  t h i s  approach has been demonstrated by MSC. 

The AAP 

These new tanks may be uprated t o  

I n  view of the above considerations and development program being 
in i t i a t ed ,  90-day cryogenics tanks a r e  considered t o  be feasible  and 
potent ia l ly  available f o r  the Cluster I1 mission. Further, other 
suitable containers are,  o r  w i l l  be, available for  more-optimum use 
where long-duration containers are not required. 

4.2 FUEL CELLS 

Three basic fue l  c e l l  concepts have been developed or  a re  being 
developed: The P r a t t  and Whitney (P&W) ffBaconll c e l l  fo r  Apollo and 
other applications , the General Electric (GE) ion-exchange membrane 
c e l l  f o r  Gemini, and the  Allis-Chalmers (A-C) cap i l la ry  matrix c e l l  
under supporting development funding. 
consumes H and 0 and produces e lec t r ica l  power and H20. They are  
d i f fe ren t  i n  features  such as electrolyte  character, materials of  
construction, system design, and operational parameters such a s  
temperature, pressure, and concentration. 

They a re  similar i n  t h a t  each 

2 2 

Integration of  the  GE ion-exchange membrane f u e l  c e l l  in to  the 
Apollo spacecraft i s  not viable, and l i f e  and performance capabili ty 
a r e  not adequate t o  meet the  mission duration and power requirements 
of AAP. A major development e f for t  would be required t o  over-come 
these deficiencies; therefore, t h i s  f ue l  c e l l  w i l l  not be considered 
fur ther  f o r  AAP Cluster I1 missions.  

Life,  weight, power levels ,  and other important specifications 
of the P&W and A-C fue l  c e l l s  are given i n  tab le  4. 

The baseline f u e l  c e l l  f o r  AAP Cluster I missions i s  an improved 
Block I1 P&W system. 
eliminated because of i t s  l i f e  and power l imitations.  
reason, t h i s  f u e l  c e l l  was eliminated from Cluster I1 consideration. 

The present Apollo Block I1 f u e l  c e l l  was 
For the same 

15 
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MSC has in i t i a t ed  procurement action f o r  qualification of the 
improved Block I1 c e l l .  Specifically, the program w i l l :  

a .  Qualify one ceria/cobalt fuel  c e l l  module f o r  1500 hours 
operation t o  the performance levels described herein. 

b. Qualify a suitable pinion gear f o r  the H2 pump separator f o r  
1500 hours a t  AAP s t r e s s  levels. 

c .  Develop and qualify (with the fue l  c e l l )  a voltage regulator 
(buck-type) f o r  voltage compatibility a t  low power. 

d. Modify thermal functions of the  primary by-pass valve t o  
produce a more constant operating temperature, thereby improving 
t ransient  capabili ty.  

The A-C fue l  c e l l  development program has been oriented toward 
maximum f l e x i b i l i t y  i n  design f o r  application t o  a variety of spare 
missions. The Apollo CSM requirements have been used a s  a baseline 
design t o  achieve maximum compatibility with existing spacecraft. 
A-C f u e l  c e l l  i s  considered a s  a potential Cluster I back-up system. 
O f  primary concern i n  its use a r e  ava i lab i l i ty  and r e t r o f i t .  
appears l i ke ly  tha t  the A-C system would be available f o r  Cluster I if  
the planned Design Verification Test program scheduled f o r  the f a l l  and 
winter of 1967 is successful. Qualification could be completed i n  mid- 
1968. Use of t h i s  system f o r  Cluster I1 does not appear time c r i t i c a l .  

The 

It 

Concerning r e t r o f i t ,  it has  been a prime goal throughout the A-C 
program t o  achieve a configuration that i s  interchangeable with the 
present CSM fue l  ce l l s .  
problem. 

Therefore, t h i s  i s  not considered a major 

The improved Block I1 f u e l  c e l l  has the potential  capabili ty of l i f e  
extension t o  90 days, although a t  lower power leve ls  than Cluster I. 
Modifications and improvements i n  addition t o  those currently planned 
may be required predicated on the par t icular  mission and power require- 
ments. 
(ECA) may be necessary t o  allow in-flight start /stop capability. 

A s  an example, development of an electronic control assembly 

The current A-C fue l  c e l l  program has an ultimate goal of developing 
a 2500-hour system. 
ear ly  date and with a system capable of sustained high power level.  

It has the potential  t o  achieve t h i s  goal a t  an 

4.3 SOLAR CEU/BATTERY SYSTEMS 

Evaluation of mission requirements with respect t o  need dates and 
power levels  f o r  Cluster I1 indicates that existing hardware should be 
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used t o  the maximum extent. For this study, it was assumed tha t  AAP 
Cluster I hardware w i l l  have been developed and flight-proven by the 
time Cluster I1 missions are implemented. 
(exis t ing baseline) hardware indicates tha t ,  for  most cases, t h i s  
hardware can be used with certain modifications. For a l ternate  mission 
2, however, anewtt solar  array hardware must be developed, since the 
SIVB (and i t s  arrays) i s  not ut i l ized i n  the cluster.  

Evaluation of the Cluster I 

Solar array systems of many s izes  have been used on unmanned 
sc i en t i f i c  s a t e l l i t e s ,  but fo r  the most par t  the arrays and associated 
hardware were of much smaller sizes than are required f o r  AAP sppli- 
cations. 
employing fixed (non-orientable ) one-piece , paddle-type arrays or  
body-mounted arrays. A small number of systems, however, did u t i l i z e  
deployable arrays with un i t  assembly (wing) areas of up t o  105 
square f e e t  and independent orientation. 
have been used on Air Force Agena missions and employ the only tech- 
nology suitable f o r  consideration i n  t h i s  study ( i f  existing hardware 
must be used) primarily because the unit  s izes  and packaging/deployment 
concepts of other candidate systems are  basically incompatible with 
the mission and spacecraft integration requirements. From an engineer- 
ing standpoint, an improved array system could be made available i n  
nominally 2 t o  2-1/2 years which would be l igh ter ,  more e f f ic ien t ,  and 
more re l iab le  than now available. 
recent technology improvements such as  lightweight substrates, larger  
un i t  solar  c e l l s  (improved area u t i l i za t ion  and lower cost/unit area),  
thinner solar ce l l s ,  and increased component efficiencies.  
substrate weight alone can be improved (using 1967 technology) by a t  
l e a s t  25% re la t ive  t o  current Agena wing or  IN-ATM array designs. 
Additionally, the Agena wing design u t i l i z e s  ce l l s  of approximately 
10% efficiency, although 10.5% to 10.8% c e l l s  are now available i n  
quantity. 

Most of the systems were simple, uncomplicated designs 

Assemblies of this s ize  

Such a system would make use of 

For example, 

The "baseline" array configuration f o r  Cluster I consists of 6 
Agena-type, 63-panel wings and 2 Agena-type, 45-panel wings (a  t o t a l  
of 468 panels, or 6320 watts gross, f u l l  normal array power as shown 
i n  figure 7. 
rotation, as  shown i n  the figure, but t h i s  feature has not yet been 
decided. 

The two end panels on each side may be capable of limited 

The SIVB arrays i n  the existing baseline configuration are  un- 
sat isfactory fo r  Cluster I1 applications because: 

a. Limited power compatibility due t o  unfavorable array/sun angles 
during APPS operations. 

b ,  Insufficient array capability t o  meet load power requirements 
during sun-oriented f l i g h t  modes. 

19 



. . .  , f 

Both of these problems, however, can be overcome t o  a limited 
extent by incorporating the following modifications: 

a. Incorporate single-degree-of-freedom drive system t o  
compensate fo r  off-orientation. 
wings on each side on a common platform and adding a drive motor/linkage 
system. Possible configurations are shown i n  figures 8 and 9. 

b. Incorporate additional array area (within physical limits) as  
This  improvement provides an additional 

This would involve mounting the  

indicated i n  figures 8 and 9. 
1215 watts gross giving the improved array a m a x i m u m  pcrwer capabili ty 
of 7535 watts gross normal power. This represents the m a x i m u m  amount 
of array tha t  can be reasonably added within the stowage l imitations 
of the array shrouds. 

Although these modified and improved arrays s t i l l  do not meet the 
requirements of all cases for  the missions under consideration, it does 
effect ively minimize the s ize  of solar  arrays tha t  must be added else- 
where t o  fu l f i l l  mission power requirements. 
t ha t  the SIVB arrays would be f l ight-qual i f ied and proven during 
Cluster I missions, it should be noted tha t  the "baseline" system a t  
this time i s  s t i l l  i n  the conceptual stage and al ternate  designs a re  
presently under evaluation. 
a re  not fu l ly  defined, since a l l  the analyses are not completed. The 
major problems tha t  have been brought out by the studies thus f a r  are  
summarized below : 

Although it was assumed 

The problems of integrating the arrays 

a. Array growth i s  severely l imited due t o  aerobal l i s t ic  res t r ic -  
t ions  on pod ( envelope) dimensions. 

b. Preliminary analyses indicate severe thermal energy interchange 
problems between the SIVB stage and the deployed arrays. 

C. The arrays w i l l  probably l l f rost  uprr during stage fueling and 
launch operations. A dry nitrogen purgesystem i s  being considered as  
a possible solution. 

d. During stage fueling, the en t i re  stage contracts approximately 
Array mounting/attachment hardware must be able t o  compen- 4 inches. 

s a t e  f o r  t h i s  significant contraction and subsequent expansion i n  o rb i t a l  
flight. 

e. Requalification of the Agena-type wings t o  SIVB specifications 
may be necessary. 
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4.4 SECONDARY BATTERIES 

Secondary (rechargeable) ba t te r ies  are  used t o  provide dark time 
power and peak power requirements. 
ba t te r ies  during the sun-lit portion of the orbi t .  

Solar c e l l  systems charge these 

A state-of-the-art review of secondary ba t te r ies  indicates t ha t  

Because of the existence of applicable f l i gh t  hardware 
the  most applicable types for  Cluster I1 purposes are the Ni-Cd and 
Ag-Cd types. 
and proven longer l i f e ,  the Ni-Cd bat tery i s  recommended for  use. 
Specifically, the Ni-Cd battery designed fo r  use on the AMDA i n  support 
of Cluster I appears a t  t h i s  time t o  have the performance capabili ty 
t o  meet the requirements of Cluster 11. No modifications are required; 
however, real-time tes t ing of a t  l ea s t  one year should be performed 
p r io r  t o  u t i l i za t ion .  

4.5 PFUMARY BATTERIES 

Primary ba t te r ies  are required t o  provide power for  deorbit 
systems. 
available are  the Ag-Zn bat ter ies  being developed and qualified f o r  the 
Apollo LM. 
modification) fo r  Cluster I ascent and deorbit requirements. 
Cluster I ascent and deorbit requirements are being sa t i s f ied  with 
CSM fue l  cel ls .  
and docking i n  Cluster I1 missions. 

The largest  capacity, f l i gh t  qualified primary ba t t e r i e s  

Four LM descent stage ba t t e r i e s  were recommended (without 
Present 

Fuel ce l l s  w i l l  always be used for  ascent, rendezvous, 

4.6 POWER CONDITIONING AND CONTEflL 

To obtain high efficiency and re l iab le  performance from a space 
vehicle e l ec t r i c  power system, it i s  necessary t o  make a c r i t i c a l  
inspection of the equipment requirements t o  establish the parameters 
of required voltage, power, and tolerance. Preliminary analysis of 
t h e  power requirements and configurations f o r  Cluster I1 missions 
indicate the necessity fo r  power conditioning and control equipment 
i n  nearly all of the power system options. 
control discussed i n  the detailed report  includes voltage regulators 
and bat tery chargers. 

The power conditioning and 

Power conditioning equipment being developed i n  support of Cluster I 
appears a t  t h i s  time t o  have the r e l i a b i l i t y  and performance capabili ty 
t o  meet the requirements of Cluster 11. 
and i n i t i a t i o n  of 2500-hour qualification programs are required pr ior  
t o  u t i l i za t ion  of these items of equipment on the Cluster I1 missions. 

However, extended t e s t  programs 



5.0 PGS AND CGSS DESIGN AND ANALYSIS 

The approach t o  satisfying the mission requirements was t o  f irst  
examine Cluster I hardware and hardware concepts f o r  appl icabi l i ty  t o  
Cluster 11. 
the next s tep was t o  modify o r  improve tha t  hardware. 
suff ic ient ,  the next step was t o  consider combining improved hardware 
with new systems tha t  ma-ze use of present technology and t o  con- 
s ider  a l l  new systems tha t  maximize use of present technology. 
candidate concepts and/or technology (as  required for  new systems) 
were discussed i n  section 4. 
design and analysis f o r  each missibn. 
t o  consider all of these steps f o r  three uses of fuel  cel ls :  
day CSM/LM-APPS fall-back mode, (2) fue l  c e l l  power for  90 days a t  the 
crew water-use ra te ,  and ( 3 )  power f o r  the CSM fo r  the 90-day mission. 
The potent ia l  combinations are given i n  figure 10. 

If Cluster I hardware could not s a t i s fy  the requirements, 
If t h i s  was not 

The 

This procedure was used f o r  PGS and CGSS 
Additionally, it was necessary 

(1 ) 14- 

5.1 CGSS DESIGN AND ANALYSIS 

The CGSS provides storage for gases required f o r  fue l  c e l l  power, 
cabin atmosphere (including leakage), and metabolic consumption. 

The AAP tanks discussed i n  section 4.1 are selected t o  s tore  and 
supply these gases. 

All CGSS must be located i n  the Apollo CSM except fo r  special cases 
such a s  the CGSS required f o r  init ial  OWS or  LM-APPS activations. 
CSM payload i s  volume-constrained i n  Bays I11 and V I  by RCS and SPS 
components. This limits the number of cryogenic tanks t o  eight and 
the  90-day fue l  c e l l  power capability of the CSM t o  about 1.2 KW. 
The water production ra te  a t  t h i s  power level ,  however, i s  adequate 
t o  meet the dai ly  water requirements of a 3-man crew (about 27 pounds). 

The 

The t o t a l  wet system weights under the above conditions fo r  the 

I n  each case, three O2 tanks, four H2 tanks, and 1 N2 
baseline and al ternate  missions 1 and 2 are 6573, 6399, and 5940 pounds, 
respectively. 
tank are  employed. 

This combination Will supply reactants f o r  1.2 KW fue l  c e l l  power 
for  a l l  three missions and is based on leakage and metabolic ra tes  given 
i n  section 3.0. 
baseline mission requirements. 
available fo r  these reactants f o r  the  a l ternate  missions. 
406, 432, and 568 pounds of N2 may be added f o r  the baseline, a l ternate  
1 and al ternate  2 missions, respectively, i f  needed. 

There i s  essentially no O2 o r  H2 contingency fo r  the 
About 3 t o  13 percent contingency i s  

A?pmximately 
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The cryogenic tanks are located i n  the CSM as  follows: 

Bay I V  - 2 tanks H2 

Bay I11 - 2 tanks H 
Bay I - 3 tanks o2 

Bay V I  - l t a n k  $ 
This CSM configuration w i l l  supply the  mission requirements f o r  the 

baseline mission and also alternate missions 1 and 2. 
CSM becomes a standard vehicle for  all the  mission poss ib i l i t i es .  

Basically, the 

Parametrically, the power capabi l i t ies  of t h i s  configuration are  
as follows: 

90 days - 1.2 Kw 
30 days - 3.75 Kw 
14 days - 8.0 Kw 

These power levels  are such that  the combined CSM and LM-APPS 
could have independent operation using a 3.78 KW power leve l  f o r  29.7 
days. If the staggered LM-APPS power leve l  of 2.00 KW f o r  15 days 
and 1.62 KW f o r  the remainder of the time i s  used, the CSM/LM-APPS 
combination could operate for 31.4 days. 

For the case where a 14-day fue l  c e l l  system i s  considered with 
an a l l  solar  c e l l b a t t e r y  PGS, the CGSS weight t o t a l s  f o r  the  baseline, 
a l te rna te  1 and 2 missions are 5025, 4851, and 4305 pounds, 
respectively. 
tank are  employed. 

I n  t h i s  case three O2 tanks*, two H2 tanks, and one N2 

This case s a t i s f i e s  launch, ascent, rendezvous, and docking require- 
It includes 

However, 
ments as  well as  the required CSM/LM-AF'PS fall-back mission. 
one additional day of power capability as a contingency factor.  
a complete 10 percent contingency fac tor  may be applied t o  the CGSS, i f  
t h i s  case i s  selected, because volume i s  available. 

The OWS/AMDA must carry enough gas supplies t o  provide f o r  activa- 
t ion.  These supplies are not included on the CSM. 
can be met by using one oxygen tank and one nitrogen tank. 
breakdown for  the OWS i s  as  follows: 

This requirement 
The weight 

Oxygen 412 lbs .  
2 Block I Oxygen Tanks 173 lbs.  
Nitrogen 106 lbs. 
1 Nitrogen Tank 87 lbs. 

778 lbs.  
- 

*Two O2 tanks fo r  a l ternate  mission 2. 
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These supplies w i l l  not allow a second activation. 

5.2 FUEL CELL DESIGN AND ANALYSIS 

The design requirements fo r  candidate fue l  c e l l  powerplants for  the 
Cluster I1 missions are  ( 1 )  water production requirements, (1200 watts) 
(2)  1475 watts net average continuous power with a daily peak of 2900 
watts net, and ( 3 )  use of a fuel  ce l l  system f o r  launch, ascent, 
rendezvous, docking, and supplying CSM loads during high power demands 
on the  solar array, when primary cluster power i s  furnished by an a l l  
solar  c e l l b a t t e r y  system. 
1 &day m i n i m u m  fallback mission capability. 

All  three c r i t e r i a  must provide fo r  a 

Fuel c e l l  u t i l i za t ion  t o  sa t i s fy  the  above c r i t e r i a  was determined 
a s  outlined below (pertains equally t o  baseline and al ternate  missions). 

Criteria 1 

a. 
fue l  ce l l s .  

Use e i ther  three improved P&W Block I1 fue l  ce l l s  or three A-C 

b. 
f a i lu re  o r  excessive degradation occurs, then switches t o  second stand- 
by fue l  ce l l .  

One fue l  c e l l  operates a t  1200 watts for  45 days o r  u n t i l  

c. Provides high r e l i ab i l i t y  due t o  three-for-one redundancy 
and derated power level.  

d. Provides potent ia l  of 135 days operation based upon the 1500- 
hour qualification planned f o r  mid-1 968. 

e. In-flight start must be developed f o r  the  improved P&W fue l  
c e l l  and minor modification incorporated. 

Cr i te r ia  2 

a. Use three A-C fue l  cells .  

b. With A-C fue l  ce l l s ,  operate two a t  875 watts each average 
and hold the th i rd  i n  reserve. 

C. Cr i ter ia  could be met with improved P&W Block I1 fue l  ce l l s ;  
however, about 330 pounds of H 
available due t o  SM volume l d t s .  

are required and only 250 pounds are  
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Cri te r ia  3 

Use e i ther  improved P&W Block I1 fue l  c e l l s  o r  A-C fuel  cel ls .  

The fallback mode assumes the lack of solar  array power, with 
the  LM-APPS being ent i re ly  dependent on the CSM fuel  c e l l  system. 

This can be accomplished with any of the fue l  c e l l  systems 
previously recommended herein. 
energy of 112.5 Kw-days (cryo-limited) on the CSM, the fue l  ce l l s  
could supply the reqdrements f o r  the  CSM and 'LM-APPS f o r  28 days with 
an excess of 4.4 Kw-days (73 watts continuous f o r  28 days). This 
assumes a constant umbilical loss i n  transferring the power from the 
CSM t o  the AMDA bus of 300 watts, continuous, fo r  28 days. 

However, with the d m u m  available 

This fallback mode of operation lends credance t o  the possibil- 
i t y  of reducing the solar  array s i ze  requirement by u t i l i z ing  the fue l  
c e l l s  t o  power the CSM during LM-APPS operation. This i s  fur ther  
exemplified by the requirement that  the vehicle be earth oriented 
during the LM-APPS experiment phase, thus placing it i n  a non-optimum 
a t t i t ude  f o r  array sun orientation, therefore further increasing the 
solar array panel size.  
single-axis oriented arrays. 
t h a t  water storage capability during the first 28 days of operation 
be suff ic ient  fo r  the crew requirements f o r  the ent i re  mission, 
since a l l  the water would be generated during t h i s  time. It fur ther  
requires that the  solar array furnish a l l  CSM power requirements and 
LM-APPS standby power fo r  the remaining 62 days of the mission. The 
CSM power requirement during th i s  phase would be reduced by the paras i t ic  
requirement of the fue l  c e l l s  (315 watts) .  

T h i s  i s  par t icular ly  t rue  fo r  fixed and 
T h i s  mode of operation would require 

5.3 SOLAR CFLL/BATTEBY SYSTEM DESIGN AND ANALYSIS 

5.3.1 General 

I n  most preliminary studies of this nature, it i s  suff ic ient  t o  
design solar c e l l b a t t e r y  systems t o  worst case orb i t  use. 
usually e i ther  with f l i g h t  i n  the ec l ip t i c  plane for  equatorial o rb i t s  
o r  a midnight (o r  noon, de ending on launch time) plane f o r  polar orbits-- 
cases where minimum l i gh t  P dark time ra t io s  occur. However, with the 
combination of high Cluster I1 power levels  and the high incl inat ion 
"equatorialf1 o rb i t a l  requirement, such an approach would r e su l t  i n  
excessive array areas and battery weights. 
was therefore necessary i n  t h i s  study. 

This i s  

A more refined approach 
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The performance of a solar  c e l l b a t t e r y  system i n  o rb i t a l  f l i g h t  
is  a function of several geometrical and time-related variables, which 
i n  tu rn  depend on launch conditions such as  time of day, day of year, 
etc. For t h i s  study, the following launch conditions were assumed: 

a. January launch 

b. Time of day of launch i s  chosen t o  provide maximum sunlight 

50' orbi t  inclination and 260 nautical  miles al t i tude.  

(100 percent) during in i t i a l  orbits.  

c. 

If  condition a. were different, condition b. could s t i l l  be sa t i s -  
f ied  on any other day of the  year by choosing the appropriate time of 
day f o r  launch. 
sunlight condition (58 minutes l i gh t )  due t o  o rb i t a l  plane regression 
a s  i l l u s t r a t ed  i n  figure 11. 
i n  performing solar  array performance analyses, it i s  necessary t o  
consider an angle (beta),  defined as follows: 

Condition b., however, gradually changes t o  a m i n i m u m  

To account f o r  t h i s  o rb i t a l  regression 

B G 90' minus the angle between the perpendicular t o  the o rb i t  
plane and the earth-sun l i ne .  

The angle 13 varies not only because of o rb i t a l  plane regression, but 
a l so  because the ear th  i s  orbiting the sun i n  a direction opposite t o  
t h a t  of the regression, thus effectively decreasing the r a t e  of change 
of f l  . 
includes the e f fec ts  of regression and the earth orbiting the sun. 

figure 12 shows the variation of 0 as a function of time and 

The variation of 0 not only causes a change i n  the percent sunlight 
per o rb i t  with time, but also affects  the angle of solar incidence with 
respect t o  a plane (such as solar arrays)  fixed on the spacecraft. The 
percent sunlight variation i s  shown i n  figure 13. 

Other geometrical considerations include solar  array posit ion 
re la t ive  t o  the orb i t  plane and spacecraft f l i g h t  mode. 
the  following solar  array ins ta l la t ion  options were considered: 

For each case, 

a. Fixed arrays 

b. Arrays with one degree of freedom 

c. Arrays with two degrees of freedom: rotation about array 
centerline and B-adjust (correction fo r  undesirable 6 ). 

I n  addition, f o r  each o f  the three missions (baseline and two 
a l te rna tes )  two solar  array power options were considered i n  conjunction 
with the c e l l  operation: 
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a. 
1200 watts). 

Fuel c e l l s  operating a t  water use r a t e  power leve l  (about 
T h i s  case i s  termed C W .  

b. CSM fu l ly  dependent on the so la r  c e l l b a t t e r y  system. However, 
the 14-da minimum CSM/APPS fue l  ce l l  fall-back capabili ty ( 56 KW-DAY 
of energy 3 is  used t o  power the CSM during AFTS operations when f a l l -  
back i s  not incurred. This case is  termed CSMD. 

Except f o r  the power leve l  differences, a l l  orb i ta l  conditions, 
array a t t i tude  options, and analytical  procedures were ident ica l  for  
the CSMW and CSMD cases. 

Solar array integration and deployment locations considered were 
(1 ) along the sides of the SIVB as i n  Cluster I, except with one degree 
of freedom a s  well as  fixed and (2)  on the AMDA (deployed from the 
Airlock truss). 

Array performance calculations showed tha t  fixed arrays are  
generally unsatisfactory. 
t o  provide the required power outputs. 
provide considerable improvement over fixed arrays; however, power 
availabilhty during certain f l igh t  periods is low. For example, a t  

= 73.5 and with the array a x i s  of rotat ion perpendicular t o  the 
o rb i t  plane, only 15 percent of the average normal power output i s  
available. Two-degree-of-freedom arrays (one degree of freedom i n  
rotat ion about the array centerline and the second degree of freedom 
i n  6-adjust) perform essentially a s  a solar-oriented arrays, since all 
misorientation angles are removed by the orientation system. 
of course, the most e f f ic ien t  system f o r  use during streamline f l i gh t  
modes, since it provides 100 percent of the array capability. 

Excessively large arrays would be required 
One degree of freedom arrays 

This is ,  

A s  stated i n  section 4, the secondary battery selected f o r  Cluster 
I1 i s  the Ni-Cd battery currently planned for  use on the  Cluster I AMDA. 

Battery requirements f o r  the various Cluster I1 mission options 
were based on the following f o r  the Ni-Cd system: 

a. 25 percent depth of discharge for one year operation. 

b. Three fo r  two redundancy factor  

C. Available energy of 1300 W-H per battery 

d. Weight per battery (including cold-plating) of 1 10 pounds. 

I n  addition, bat tery requirements are determined by mission power 
prof i le ,  i n a d m u m  orb i t a l  dark t i m e ,  solar array output power, power 
conditioning and (distribution) efficiencies,  and bat tery charge/dis- 
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charge efficiencies.  

5.3.2 Baseline Mission PGS Design 

The PGS design f o r  the baseline mission was accomplished para- 
metrically taking in to  account the various options, f l i g h t  modes, 
o r b i t a l  parameters, and s o l a r  array configurations previously discussed. 
Solar cell /battery system sizing data fo r  the  CSMD and CSMW f u e l  c e l l  
options, one degree of freedom SIVB and AMDA arrays,  one degree 
of freedom SNB arrays with one degree of freedom plus 13-adjust AMDA 
arrays, and new arrays with one degree of freedom plus 13-adjust were 
computed. The data consist  of solar array and battery design charac- 
teristics (weight, area, t o t a l  power, etc.) corresponding t o  the 
worst and best  angles. The cases considered included paral le l ,  
perpendicular, and solar oriented ( iner t ia l )  array f l i g h t  modes. 

Shown i n  tab le  5 i s  an example of the solar  cell /battery system 
data f o r  the baseline mission. The example is  f o r  the CSMW 

The 
case sizi7 CSM fuel c e l l s  operating a t  water use r a t e  1200 watts) with 
one degree of freedom solar  arrays on both the  SNB and AMDA. 
data produced i n  t h i s  manner show that: 

a. Using the fall-back fue l  c e l l  capabi l i ty  t o  provide CSM 
power during APPS operations reduces the solar  cel l /bat tery system 
weights by 5 t o  15 percent from the CSMW weights f o r  both para l le l  and 
perpendicular array f l i g h t  modes. 
approximately 20 percent more than CSMW weights f o r  the so la r  oriented 
( ine r t i a l )  cases, tha t  is ,  operation between APPS. 

However, the CSMD weights a re  

b. The perpendicular array f l i g h t  mode weights a re  higher i n  
a l l  cases than the pa ra l l e l  mode weights. However, adding -adjust 
t o  the additional or  "newff Airlock arrays reduces the difference 
from a maximum factor  of about 110 percent t o  a maximum fac tor  of 
about 15 percent. These data i l l u s t r a t e  the merits of both array 
f l i g h t  modes. 

c.  Adding p -adjust t o  Airlock arrays allows weights t o  be reduced 
between about 250 percent and 20 percent from cases without @-adjust. 
Using only %ewfl arrays on the  Airlock reduces weight an additional 
25 t o  75 percent. 

d. The minimum weights f o r  the  parallel f l i gh t  modes a re  dictated 
by the solar-oriented f l i g h t  modes that occur between APPS operations. 
This i s  because the best o r b i t  f o r  the parallel case i s  a 100-percent 
sunlight orb i t  t ha t  does not require bat tery charging and thus signifi- 
cantly reduces weight. 
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I n  addition, the tabular data discussed above are presented i n  
the detailed report i n  the form of p lo t s  of B versus solar  c e l l b a t t e r y  
system weights. 
c lus te r  i s  between B = 0 and B =  a selected angle. 
presented i l l u s t r a t e  the effect  of APPS operations on solar cel l /  
bat tery system weights and show the value of programming APPS operations 
i n  reducing weight. 
the  data given i n  tab le  5. 

These p lo ts  show the percent orb i t  time a t  which the 
The curves thus 

Figure 14 i s  an example of t h i s  type of plot  for  

5.3.4 Alternate Missions 1 snd 2 PGS Design 

For a l ternate  missions 1 and 2, the same o rb i t a l  conditions and 
operations prevail. However, for a l ternate  mission 2 there i s  no OWS 
and therefore no SIVB solar  array. 
mission is  of necessity new, although the components may be based 
on present technology. 

Hence, any solar array f o r  tha t  

The same type of parametric design data as produced fo r  the base- 
l i n e  mission were produced f o r  the two al ternate  missions. 
the  options considered showed basically the same relationships as 
indicated i n  the baseline mission analysis. 

I n  general, 

5.3.5 Design of Additional Arrays Required 

Detailed examination of the OWS and AMDA shows tha t  the additional 
o r  new arrays are  most logically stowed around the lower par t  of the 
AMDA and deployed from the top airlock trusses. 
supported by previous MSC in-house studies,  McDonnell Corporation 
air lock studies, LMSC studies, and N U  studies. 
arrays on the LM-APPS vehicle was not considered fo r  two primary reasons: 
(1 )  arrays on the LM-APPS would of necessity have t o  be actively 
oriented i n  two axes and would therefore present potentially severe 
view factor  interference problems for  the earth-looking APPS experi- 
ments and (2) arrays on the LM-APPS would be i n  a poor location with 
respect t o  the ent i re  c luster  and would experience, a t  best ,  pa r t i a l  
shadowing from the sun i n  most orbi ts ,  par t icular ly  during APPS 
operations when power i s  needed most. 

This selection i s  

Ins ta l la t ion  of solar 

The two fixed constraints t o  the t o t a l  array area tha t  can be 
stowed are  (1 ) number of stowed wings tha t  can be placed side by side 
around the AMDA and (2 )  package length as  related t o  f i t t i n g  within the 
minimum SLA clearance for launch. 

Integration studies showed that:  
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a. Package length i s  sat isfactory f o r  SLA clearance. 

b. Single-stack, overlap arrangement i s  selected as stowage mode 
(see detai led report  f o r  integration drawings) . 

c .  Arrays t o  be deployed i n  the  same plane as a r e  the Cluster I 
LM-ATM arrays, thereby minimizing RCS plume impingment problems. 

d. Partial  blocking of docking por t s  may be a problem i f  AMDA array 
i s  near the  maximum size considered. 

e. Without the  OWS, the  AMDA arrays may be deployed a t  an oblique 
angle t o  increase vehicle docking cone angle clearance. 

For those cases where SIVB array power i s  available,  standard 63- 
panel Agena type wings were used a s  a design point f o r  additional arrays 
on the AMDA i f  suff ic ient  area could be obtained by t h i s  approach. How- 
ever, f o r  those cases where more than 650 square feet  of additional a r ray  
was required, t he  new array design was incorporated. 

5.4 PFUMARY BATTERY DESIGN AND ANALYSIS 

The only potent ia l  requirement f o r  primary ba t te r ies  as ide from the  
CM reentry ba t te r ies  i s  f o r  deorbit when no fue l  c e l l  system i s  available.  
As discussed i n  section 4 the  IM descent AgZn bat tery i s  the  log ica l  
choice with some additional development. Total  capacity required is  about 
7.5 kw-hr a t  the  end of 90 days wet-stand storage while maintaining a 
terminal voltage of not l e s s  than 27 vol ts .  

5.5 HYBRID POWER SYSTEM CONSIDERATIONS 

The Cluster I study report considered and discussed i n  d e t a i l  the 
requirements, configurations, advantages, and disadvantages of several 
hybrid modes of power t ransfer  and interchange. Some of t h e  same c r i t e r i a  
exist f o r  power interchange i n  the Cluster I1 vehicles; however, since 
t h e  requirement f o r  a solar  array/battery/fuel a l l  cross-feed hybrid power 
source i s  not present i n  Cluster 11, the  power interchange i s  great ly  sim- 
p l i f ied .  
is cryo-limited t o  the water production r a t e  of 1.2 kW. 

It i s  fur ther  simplified by the  f a c t  that the  use of f u e l  c e l l s  

The baseline Cluster I1 mission presents two options f o r  power inter-  
change between the  CSM and AMDA resultiing from the CSM power requirement 
of 1780 watts. 
operation requires continuous fuel c e l l  operation 1.2 kW (cryo-limited) . A s  previously noted, t h e  water production r a t e  mode of 
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This then requires t h a t  580 watts be supplied t o  the CSM from the  AMDA. 

Operational option 1, predicated on a CSM isolated-bus ground rule ,  
offers  t he  most d i r ec t  method of power interchange i n  t h a t  c r i t i c a l  CSM 
loads can be placed on a fuel  ce l l  bus and l e s s  c r i t i c a l  o r  nonvolta e- 

bat tery bus. 
sensit ive loads, such a s  heaters, can be placed on a CSM solar  c e l l  B 

Option 2, which i s  load sharing i n  the CSM from pa ra l l e l  CSM busses, 
requires t h a t  the  source voltages, fuel c e l l s  and solar cel l /bat ter ies ,  
be paral le led on common busses. 
c losely regulated t o  assure the proper r a t i o  of load sharing. 
solar  cel l /bat tery system i s  already regulated, the additional require- 
ment i s  f o r  i n s t a l l a t ion  of fuel c e l l  regulators on the C S f .  

This requires that both systems be 
Since the  

The major disadvantage i n  option 1 i s  the potent ia l  f o r  a fue l  c e l l  
T h i s  would require t h a t  the fuel c e l l  loads be switched t o  bus failure. 

the  solar  cel l /bat tery bus. Reaction time f o r  switching c r i t i c a l  loads 
i n  the  event of such a f a i lu re  might have t o  be extremely rapid t o  pre- 
clude system damage o r  degradation. Option 2 has no specific operation 
disadvantages. 
i s  required. 
are applicable t o  e i ther  method o f  load sharing. 

Before selecting e i the r  of these options, detai led study 
However, a l l  of the system sizing calculations i n  t h i s  study 

5.6 CSM FUEL CELL/FUDIATOR HEAT REJECTION SYSTEM 

Three modes of f u e l  c e l l  operation and heat re ject ion must be 
considered: 

a. Average continuous operation a t  1780 watts. 

b. Water production level of 1200 watts. 

c .  Intermittent o r  fall-back use of the f u e l  ce l l s .  

Mode a. i s  within the  capabi l i t i es  of the present Block I1 heat 
re jec t ion  system (maximum capabili ty about 3500 watts). 
re jec t ion  system modifications may be required t o  accomplish mode b. i n  
which the  radiator  f lu id  temperature could reach the  minimum allowable 
(-35OF). To accomplish mode c., some method of flowing the  radiator  
f l u i d  af ter  it has stagnated i s  required. 

Some heat 

This could require complete redesign of the  radiators,  addition of 
heaters, and possibly selection of a new f lu id .  
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5.7 ORBITAL STORAGE 

Study i n  this area showed tha t  the minimum o r b i t a l  storage power 
can be 485 watts, continuous, considering as a minimum the  SIVB array 
area with an i n i t i a l  sun adjustment, 
s tabi l ized mode of f l i g h t .  

This i s  based on a gravity-gradient 

6.0 SYSTEM SUMMARY 

The purpose of t h i s  section i s  t o  consolidate and summarize complete 
mission PGS/CGSS combinations as t o  t he  options available. The option 
matrix presented as figure 10 i s  repeated as f igure 15 with a comments 
section added. 

I n  the  detai led study report, a l l  PGS/CGSS configuration options a re  
presented i n  the form of curves of 19 angle versus solar cel l /bat tery sys- 
tem ins t a l l ed  weight with payload limits super-imposed and i n  the  form of 
detai led configuration data sheets upon which the curves a re  based. 

Two cases a re  given here as examples of the  above design information, 
both f o r  the baseline mission: 

a. CSMD case, one degree of freedom SIVB solar  array plus two degree 
of freedom AMDA solar array and a two degree of freedom array on the AMDA 
only. 

b. CSMW case, one degree of freedom SIVB array plus one degree o f  
freedom AMDA array. 

Figures 16 and 17 show the  curves representing case a .  above and 
figure 18 shows the  curves f o r  case b. 

Shown i n  table  6 i s  a typical configuration data sheet. The sheet 
shown i s  f o r  the CSMD case with one degree of freedom arrays on the SIVB 
and AMDA ( 6 = 0' case). 

A l l  configuration data sheets were summarized i n  tabular form show- 
ing in s t a l l ed  weight, payload margin, volume requirements, and t o t a l  
system cos t  (nonrecurring plus recurring) f o r  best  and worst cases f o r  
a l l  mission/design options. 
A@-6 and table  8 f o r  AAP 7/8/9/10. 

This information i s  given i n  tab le  7 f o r  

7.0 SCHEDUI,ING, COSTS, AND PFlOGRAMMATIC CONSIDERATIONS 

The detai led report provides discussions of recent progress made 
toward implementing the various hardware programs supporting Cluster I 
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missions. 
I1 hardware. 

Also, development schedules and cos ts  a re  provided f o r  Cluster 

8.0 CONCLUSIONS 

The following conclusions are  made based on the missionbGS/CGSS 
analyses conducted i n  t h i s  study: 

a. Operating the PGS solar  arrays pa ra l l e l  t o  the  o rb i t  plane allows 
increasingly smaller array area, and associated PGS weight, as APPS opera- 
t i ons  a re  programed t o  perform a t  increasingly higher included p angles. 

b. Cluster I baseline (fixed) SNB arrays w i l l  s a t i s fy  Cluster I1 
power requirements during the solar-oriented mission phases (between 
AFTS operations) a t  high B angles. 

c .  A l l  mission power requirements can be sa t i s f i ed  using improved 

Both use one-degree-of-freedom orientat ion systems. 
SIYB arrays and AMDA arrays. 
t h a t  i s  available.  

The former uses a l l  of the SIVB pod volume 

d. The AMDA arrays can use existing technology f o r  the  basic panel, 
but require a new design structure, deployment, and or ientat ion system. 

e. A E adjust  capabi l i ty  on the  AMDA arrays s ignif icant ly  reduces 
PGS weight by a t  least 25 percent depending on the specific PGS option 
selected with accompanying reductions i n  cost .  

f .  If fall-back does not occur, ueing the  fall-back f u e l  c e l l  
capabi l i ty  t o  supplement the solar cell /battery system during APPS 
operations results i n  lower in i t ia l  launch weight than operating fuel c e l l  
continuously a t  the crew water production rate .  

' 

g. The W-day CGSS operation i s  feasible  using only minimum modifi- 
cat ions t o  Cluster I hardware. 

h. The volume available i n  the CSM f o r  CGSS limits f u e l  c e l l  opera- 
t i o n  t o  the  90-day crew water consumption ra te .  

i. Both the  A-C f u e l  c e l l  system and the  uprated P&W fuel c e l l  sys- 
t e m  may be used i f  the  90-day water production approach is selected. 
The mode would be t o  use the  present 1500-hour capabi l i ty  and operate 
t h e  fuel c e l l s  i n  timed-series. 

j .  Both the A-C and uprated P&W fue l  c e l l s  are sat isfactory for  
fall-back CSM/LM-APPS operation if an a l l  solar cel l /bat tery system 
approach is selected. 
use as described i n  f .  

These fue l  c e l l  systems a re  a l so  sat isfactory f o r  
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, 

k. Minimum orb i t a l  storage power can be 485 watts, continuous, con- 
sidering as a minimum the  SrvB array area with an i n i t i a l  sun adjustment. 

1. PGS developnent/manufac ture/qualification programs are time 
c r i t i c a l  f o r  a l l  systems except fuel  ce l l s  f o r  Cluster 11. 
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